If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=(-16t^2)-96t+160
We move all terms to the left:
0-((-16t^2)-96t+160)=0
We add all the numbers together, and all the variables
-((-16t^2)-96t+160)=0
We calculate terms in parentheses: -((-16t^2)-96t+160), so:We get rid of parentheses
(-16t^2)-96t+160
We get rid of parentheses
-16t^2-96t+160
Back to the equation:
-(-16t^2-96t+160)
16t^2+96t-160=0
a = 16; b = 96; c = -160;
Δ = b2-4ac
Δ = 962-4·16·(-160)
Δ = 19456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19456}=\sqrt{1024*19}=\sqrt{1024}*\sqrt{19}=32\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-32\sqrt{19}}{2*16}=\frac{-96-32\sqrt{19}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+32\sqrt{19}}{2*16}=\frac{-96+32\sqrt{19}}{32} $
| 7(-4+x)=18-3 | | 4×1/2+q=9×1/2 | | 6x-9=4x-17 | | 10+5h=7h-10 | | 7v-50+5v+3v+50=180 | | 5x^2+48=0 | | -x+7=2x+4 | | 125+133+35+107+127+x+113=900 | | 2z-8+5z+34=180 | | 15=5t-13 | | 2p+p+20+3p-2=180 | | 10f-4f+3f=8 | | 3/4b+21/2=10 | | 8x+2=11x-25 | | 4+6x=-2x-12 | | 3t-8+9t+4t-20=180 | | c-6+3c+c-9=180 | | 4x=7x+18 | | 1/4u-18=2 | | x+65+79+48+90=540 | | -5m-5m+8=-8m-12 | | 5(-0.2+0.8d)=4d | | (x+60)^2/3-7=18 | | -15+17n=-5+7n | | t+23+77+t+38=180 | | -7x+8=-22+3x | | (x+60)^2/3=25 | | b+11/3=2 | | t-5+40+43=180 | | -17.19-8.4w=19.86w+15.3w | | 6b-8=2b | | t-21+2t+36=180 |